Understanding Nonlinear Kalman Filters, Part I: Selection between EKF and UKF
نویسندگان
چکیده
Kalman filters provide an important technique for estimating the states of engineering systems. With several variations of nonlinear Kalman filters, there is a lack of guidelines for filter selection with respect to a specific research or engineering application. This creates a need for an in-depth discussion of the intricacies of different nonlinear Kalman filters. Particularly of interest for practical state estimation applications are the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). This tutorial is divided into three self-contained articles. Part I gives a general comparison of EKF and UKF, and offers a guide to the selection of a filter. Part II presents detailed information about the implementation of EKF and UKF, including equations, tips, and example codes. Part III examines different techniques for determining the assumed noise characteristics of the system as well as tuning procedures for these nonlinear Kalman filters.
منابع مشابه
Rotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملThe Unscented Kalman Filter
In this book, the extended Kalman filter (EKF) has been used as the standard technique for performing recursive nonlinear estimation. The EKF algorithm, however, provides only an approximation to optimal nonlinear estimation. In this chapter, we point out the underlying assumptions and flaws in the EKF, and present an alternative filter with performance superior to that of the EKF. This algorit...
متن کاملConstrained nonlinear state estimation based on the UKF approach
In this paper we investigate the use of an alternative to the extended Kalman filter (EKF), the unscented Kalman filter (UKF). First we give a broad overview of different UKF algorithms, then present an extension to the ensemble of UKF algorithms, and finally address the issue of how to add constraints using the UKF approach. The performance of the constrained approach is compared with EKF and ...
متن کاملSensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation
The extended Kalman filter (EKF) and unscented Kalman filter (UKF) for nonlinear state estimation with both additive and nonadditive noise structures are presented and compared. Three different Global Positioning System (GPS)/inertial navigation system (INS) sensor fusion formulations for attitude estimation are used as case studies for the nonlinear state estimation problem. A diverse set of a...
متن کاملKalman Randomized Joint UKF Algorithm for Dual Estimation of States and Parameters in a Nonlinear System
This article presents a new nonlinear joint (state and parameter) estimation algorithm based on fusion of Kalman filter and randomized unscented Kalman filter (UKF), called Kalman randomized joint UKF (KR-JUKF). It is assumed that the measurement equation is linear. The KRJUKF is suitable for time varying and severe nonlinear dynamics and does not have any systematic error. Finally, joint-EKF, ...
متن کامل